If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=-3y^2-28y+196
We move all terms to the left:
0-(-3y^2-28y+196)=0
We add all the numbers together, and all the variables
-(-3y^2-28y+196)=0
We get rid of parentheses
3y^2+28y-196=0
a = 3; b = 28; c = -196;
Δ = b2-4ac
Δ = 282-4·3·(-196)
Δ = 3136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3136}=56$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(28)-56}{2*3}=\frac{-84}{6} =-14 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(28)+56}{2*3}=\frac{28}{6} =4+2/3 $
| 1.7x=2.3 | | 421x2−506x−346=0 | | 30-3x+10=2x+100 | | 2x2+5-75=0 | | 9x-7=2(5x+12) | | -8s+7=-7s | | 129-6t=783 | | 2m/5+1=1/10 | | (z+1.2)/5=3.6 | | 5-(n-4)=3(n+2 | | Y=n+7 | | f(18)=2(18) | | 3a+11=7a-3 | | -24-⅛p=⅜p | | -9u+17=-3u | | 14.7d=-14.58-9.6d | | Y=1200+25x | | h=(3)+4 | | 8x-10=2x+8 | | 5/7x+1/3=2/5-2/7x+2/5 | | -10-h=10+9h+10 | | 7=10-(6x+7)+4x | | -b=20-5b | | v−4v+10v=14 | | x15/4=30/x | | 4m+7=3m-2 | | 10+8a=7a-6 | | -(x-1)-3=3x+5-4x | | |1+9x|=91 | | -24=8v+6+3v | | -3(x+6)+4=7(x+2)+8 | | 2v+19=5v-20 |